Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского кафедра математической теории упругости и биомеханики

Серия ВЫЧИСЛИТЕЛЬНАЯ МЕХАНИКА

А. В. Доль, Д. В. Иванов

РЕШЕНИЕ ЗАДАЧ МЕХАНИКИ В ANSYS

Учебно-методическое пособие

Саратов 2018 УДК 531/534+514.86+681.3

ББК 22.193я73

Д65

Доль А. В.

Д65 Решение задач механики в ANSYS : учеб.-метод. пособие / Доль А. В., Иванов Д. В. – Саратов : Буква, 2018. – 68 с. : ил.

ISBN 978-5-9906918-9-6

Книга служит пособием по изучению решения некоторых задач механики в системе конечно-элементного анализа ANSYS. Рассмотрены как простые и классические задачи, так и задачи, имеющие прикладной характер. Подробно описаны постановки и решения всех рассмотренных задач.

Для студентов, магистров, аспирантов и инженерно-технических работников, специализирующихся по вычислительной механике.

Работа выполнена при поддержке

Грантового конкурса Стипендиальной программы В. Потанина (проект ГК170000223)

Работа выполнена в авторской редакции

УДК 531/534+514.86+ 681.3 ББК 22.193я73

ISBN 978-5-9906918-9-6

© А. В. Доль, Д. В. Иванов, 2018

Содержание

Вв	едение		4				
1	Решение	задачи о плоском изгибе консольной балки	5				
	1.1	Решение задачи в одномерной постановке	5				
	1.2	Решение задачи в двумерной постановке	8				
	1.3	Решение задачи в трехмерной постановке	10				
2	Расчёт Н,	ДС в коньковом соединении балок	14				
3	Решение	связанной задачи гидродинамики	26				
4	Расчёт пл	юской рамы, сравнение элементов типа Beam и Link	44				
	4.1	Элемент типа Beam	44				
	4.2	Элемент типа Link	52				
5	Параболи	ический и прямоугольный профиль скорости на входе в	сосуд:				
	сравнител	льный анализ методом конечных элементов	55				
6	Нагружение балки в два шага60						
7	Команды для активирования режима FSI65						
Зан	ключение.		66				
Ли	тература		67				

Введение

В пособии представлены пошаговые подробные описания постановки и решения некоторых задач механики. Рассмотрены вопросы применения одномерных элементов в ANSYS Mechanical APDL, решена связанная задача о движении вязкой несжимаемой жидкости по трубе с упругими стенками, которая находит свое применение в биомеханике кровообращения [1, 4]. Описан пример нагружения в два шага, которое позволяет моделировать свободные колебания балки.

Приведены команды для активирования режима FSI в ANSYS Mechanical APDL, которые сегодня уже практически не встретишь в литературе.

В рассматриваемых в пособии задачах геометрические модели строились или в CAD редакторе ANSYS, или импортировались из систем автоматизированного проектирования типа SolidWorks [2, 3].

Некоторые задачи, например, задача об НДС в коньковом соединении балок, имеет прикладное значение.

Проблема выбора параболического или прямоугольного профиля при задании скорости на входе в сосуд в задачах биомеханики [5] является актуальной. Зачастую ответ на этот вопрос принимается без обсуждения. В данном пособии рассмотрен сравнительный анализ решений задачи о течении крови по сосуду с параболическим и прямоугольным профилем скорости на входе.

Пособие ориентировано на читателей, имеющих базовый опыт решения задач механики в ANSYS.

4

1 Решение задачи о плоском изгибе консольной балки

Покажем решение задачи о плоском изгибе консольной балки в программном продукте ANSYS в трех постановках: одномерной, двумерной и трехмерной. Приведенное решение проведено в Mechanical APDL.

1.1 Решение задачи в одномерной постановке

Выберем тип решаемой задачи : Preferences \rightarrow structural (рисунок 1.1.1).

N Preferences for GUI Filtering		×
[KEYW] Preferences for GUI Filtering		
Individual discipline(s) to show in the GUI		
	✓ Structural	
	Thermal	
	C ANSYS Fluid	
Electromagnetic:		
	Magnetic-Nodal	
	Magnetic-Edge	
	🗖 High Frequency	
	Electric	
Note: If no individual disciplines are selected they will all sh	now.	
Discipline options		
	• h-Method	
ОК	Cancel Help	

Рисунок 1.1.1-Тип решаемой задачи.

После этого выберем тип элемента из библиотеки элементов: Preprocessor → Element Type → Add\Edit\Delete (рисунок 1.1.2). Выберем элемент, который соответствует балочной постановке.

\Lambda Element Types		:
Defined Element Types	:	
Type 1 BEAM18	38	
Add	Options	Delete
Close		Help

Рисунок 1.1.2- Тип элемента для одномерной постановки.

После этого зададим физико-механические свойства элемента: модуль Юнга, коэффициент Пуассона и плотность (2e11 Па, 0.33 и 7800 кг/м³

соответственно): Preprocessor \rightarrow Material Props \rightarrow Material Models (рисунок 1.1.3).

Рисунок 1.1.3 – Задание свойств материала.

Для одномерной постановки решения задачи о чистом изгибе балки необходимо задать ширину и толщину балки, а так же форму поперечного сечения. Для этого нужно выбрать пункт Preprocessor \rightarrow Sections \rightarrow Beam \rightarrow Common Sections (рисунок 1.1.4).

Рисунок 1.1.4 – Задание геометрических размеров сечения балки.

Перейдем к построению модели балки. Зададим точки (рисунок 1.1.5 (a, б)): Preprocessor \rightarrow Modeling \rightarrow Create \rightarrow Keypoints \rightarrow Active CS.

🚺 Create Keypoints in Active Coordinate System		
[K] Create Keypoints in Active Coordinate System NPT Keypoint number X,Y,Z Location in active CS	1 0 0] (d
OK Apply	Cancel	łelp
Create Keypoints in Active Coordinate System		×
[K] Create Keypoints in Active Coordinate System		
XYZ Location in active CS	10 0	0
OK Apply	Cancel	ielp

Рисунок 1.1.5 – Задание крайних точек балки.

После чего построим по точкам линию: Preprocessor \rightarrow Modeling \rightarrow Create \rightarrow Lines \rightarrow Straight Line.

Создадим вычислительную сетку: Preprocessor \rightarrow Meshing \rightarrow Mesh Tools. В окне Mesh зададим Line. В поле Global установим значение для элемента 0.2, после чего нажмем Mesh.

Поставим граничные условия: Preprocessor \rightarrow Loads \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Displacement \rightarrow On KP (рисунок 1.1.6). Зададим силу в 1000 H, действующую на консольный конец балки Preprocessor \rightarrow Loads \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Force\Moments \rightarrow On KP (рисунок 1.1.7).

[DK] Apply Displacements (U,ROT) on Keypoints	
Lab2 DOFs to be constrained	All DOF UX UY UZ ROTX
Apply as	Constant value 💌
If Constant value then:	
VALUE Displacement value	0
KEXPND Expand disp to nodes?	□ No
KEAPIND Expand disp to nodesi	j No
OK Apply	Cancel Help

Рисунок 1.1.6 – Задание жесткой заделки.

Apply F/M on KPs	×
[FK] Apply Force/Moment on Keypoints	
Lab Direction of force/mom	FY 🗸
Apply as	Constant value
If Constant value then:	
VALUE Force/moment value	-1000
OK Apply	Cancel Help

Рисунок 1.1.7 – Задание действующей на край балки силы.

Если все сделано правильно, балка после наложения сетки и задания граничных условий будет выглядеть, как на рисунке 1.1.8.

Рисунок 1.1.8 – Вычислительная сетка и граничные условия. Проведем pacчet: Solution \rightarrow Solve \rightarrow Current LS.

Считаем полученные результаты General Postproc \rightarrow Read results \rightarrow Last set, после чего выведем результаты на экран: General Postproc \rightarrow Plot results \rightarrow Deformed Shape (рисунок 1.1.9).

Рисунок 1.1.9 – Результат решения задачи в одномерной постановке – деформированная геометрия балки.

Согласно решению задачи о чистом изгибе в одномерной постановке, перемещение в крайней точке консольной балки составило 0.202 мм.

1.2 Решение задачи в двумерной постановке

Тип решаемой задачи останется таким же, как и в предыдущем случае. Но тип элементы изменится. Выберем тип элемента из библиотеки элементов: Preprocessor \rightarrow Element Type \rightarrow Add\Edit\Delete (рисунок 1.2.1).

\Lambda Element Types			×
Defined Element Types Type 1 SHELL181			
Add	Options	Delete	
Close		Help	

Рисунок 1.2.1 - Задание типа элемента в двумерной постановке.

Зададим физико-механические свойства материала так же, как в одномерном случае. Мы выбрали двумерную постановку в оболочках, следовательно, необходимо задать толщину построенной геометрии: Preprocessor \rightarrow Sections \rightarrow Shell \rightarrow Lay-Up \rightarrow Add\Edit (рисунок 1.2.2.).

	10						
Layup	Section Controls	Summary					
Layup							
Create and Mo	dify Shell Sections		Name		ID 1		
IT	ickness	Material ID	Orientation	Integration F	۲s	Pictorial View	
1 1	1		• 0.0	3	-		•
Add Layer	Delete I	ayer					
Section Offset	Mid-Plane	Use	r Defined Value				
Section Function	None defined	•	Pattern		~		

Рисунок 1.2.2 – Задание толщины геометрии.

Построим геометрию Preprocessor \rightarrow Modeling \rightarrow Create \rightarrow Create \rightarrow Rectangle \rightarrow By 2 Corners (рисунок 1.2.3).

Создадим сетку таким же образом, как в прошлый раз: в окне Global снова зададим 0.2. Чтобы сетка была регулярной, поставим параметр Quad, Mapped.

• Pick		O Unpick		
WP X	-			
¥	=			
Global X	=			
Y	=			
Z	=			
/P X		0		
JP Y	0			
lidth		10		
Height		1		
ОК	Apply			
Reset	t	Cancel		
Helm		1		

Рисунок 1.2.3 – Создание прямоугольной геометрии.

Зададим граничные условия. Для задания жесткой заделки: Preprocessor \rightarrow Loads \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Displacement \rightarrow By Line. Зададим силу, действующую на консольный конец балки Preprocessor \rightarrow Loads \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Force\Moments \rightarrow On Nodes. Задавая силу, воспользуемся опцией «Box», чтобы выделить все узлы в торцевой части структуры. Выберем пункт «On Nodes» вместо «On KP» в связи с тем, что Nodes – количество узлов сетки, а KP только точки в узлах прямоугольника. Чтобы величина приложенной нагрузки совпадала с величиной нагрузки из предыдущего случая, поделим суммарную нагрузку на количество узлов, получая по -166.67 H на каждый узел. Если все сделано правильно, балка после наложения сетки и задания граничных условий будет выглядеть, как на рисунке 1.2.4.

Рисунок 1.2.4 – Вычислительная сетка и граничные условия.

Проведем расчет: Solution \rightarrow Solve \rightarrow Current LS. Считаем полученные результаты: General Postproc \rightarrow Read results \rightarrow Last set, после чего выведем результаты на экран: General Postproc \rightarrow Plot results \rightarrow Deformed Shape (рисунок 1.2.5).

Рисунок 1.2.5 – Результаты решения задачи в двумерной постановке – деформированная геометрия балки.

По результатам решения (рисунок 1.2.5), перемещение крайней точки консольной балки составило 0.209 мм.

1.3 Решение задачи в трехмерной постановке

Тип решаемой задачи останется таким же, как и в предыдущих случаях. Выберем тип элемента из библиотеки элементов: Preprocessor \rightarrow Element Type \rightarrow Add\Edit\Delete (рисунок 1.3.1).

🚺 Library of Element Types					
Library of Element Types		Structural Mass Link Beam Pipe Solid Shell Solid-Shell		 Quad 4 node 182 8 node 183 Brick 8 node 185 20node 186 concret 65 ▶ Brick 8 node 185 	
Element type reference number		1			
ОК	Apply	Cancel		Help	

Рисунок 1.3.1- Задание типа элемента в трехмерной постановке.

Зададим физико-механические свойства материала так же, как в предыдущем случае. Построим геометрию: Preprocessor \rightarrow Modeling \rightarrow Create \rightarrow Volume \rightarrow Block \rightarrow By 2 Corners & Z (рисунок 1.3.2).

🚺 Block by 2 Corners & Z 🛛 🗡				
Pick		C Unpick		
WP X	-			
¥	=			
Global X	=			
Y	=			
Z	-			
WP X		0		
WP Y		0		
Width		10		
Height		1		
Depth		1		
ОК		Apply		
Reset		Cancel		
Help				

Рисунок 1.3.2 – Создание параллелепипеда.

Создадим сетку таким же образом, как в предыдущем случае. Чтобы сетка была регулярной, поставим параметр «Нех».

Зададим граничные условия. Для задания жесткой заделки: Preprocessor \rightarrow Loads \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Displacement \rightarrow By Area. Зададим силу, действующую на консольный конец балки Preprocessor \rightarrow Loads \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Force\Moments \rightarrow On Nodes. Задавая силу, воспользуемся опцией «Box», чтобы выделить все узлы в торцевой части структуры. Для того чтобы величина приложенной нагрузки совпадала с величиной нагрузки из предыдущих пунктов, поделим суммарную нагрузку на количество узлов (36), получая по -27.7 H на каждый узел.

Если все сделано правильно, балка после наложения сетки и задания граничных условий будет выглядеть, как на рисунке 1.3.3.

11

Рисунок 1.3.3 – Вычислительная сетка и граничные условия. Проведем расчет: Solution \rightarrow Solve \rightarrow Current LS. Считаем полученные результаты: General Postproc \rightarrow Read results \rightarrow Last set, после чего выведем результаты на экран: General Postproc \rightarrow Plot results \rightarrow Deformed Shape (рисунок 1.3.4, 1.3.5).

Рисунок 1.3.4 – Решение задачи в трехмерной постановке – деформированная геометрия (изометрический вид).

Рисунок 1.3.5 – Результат решение задачи в трехмерной постановке – деформированная геометрия (вид сбоку).

Согласно решению задачи о чистом изгибе в трехмерной постановке, прогиб в крайней точке консольной балки составил 0.199 мм.

Результаты решения задачи о чистом изгибе консольной балки для балок одинаковой геометрии и при одинаковой нагрузке совпали во всех трех постановках с погрешностью, не превышающей 5% (таблица 1.3.1).

Таблица 1.3.1 – Сравнение результатов в перемещениях для разных постановок задачи.

Тип решения задачи	Максимальный прогиб, мм
Одномерная постановка	0.202
Двумерная постановка	0.209
Трехмерная постановка	0.199

2 Расчёт НДС в коньковом соединении балок

Построим трёхмерную модель конькового соединения балок двутаврового сечения в программном комплексе SolidWorks. На рисунке 2.1 представлен чертёж модели конькового соединения с заданными нагрузками.

Рисунок 2.1 – Чертёж конькового соединения балок.

Для начала необходимо создать эскиз двутаврового сечения для балки 55Б1. Геометрические размеры балки в соответствии с ГОСТ 26020-83: высота h = 543 мм, ширина полки b = 220 мм, толщина стенки s = 9.5 мм, толщина полки t = 13.5 мм, радиус сопряжения r = 24 мм (рисунок 2.2).

Рисунок 2.2 – Размеры поперечного сечения балки.

На рисунке 2.3 показан эскиз двутаврового сечения балки.

Рисунок 2.3 – Эскиз двутаврового сечения балки.

Вытянув построенный эскиз (меню Вставка → Элементы → Вытянутая бобышка/основание), получим балку, изображённую на рисунке 2.4.

Рисунок 2.4 – Модель балки.

Для того чтобы построить модель конькового соединения, необходимо:

- 1. Повернуть балку на 10° относительно горизонта (в соответствии с рисунком 2.1).
- 2. Построить на торце пластину для соединения балок.
- 3. Создать и закрепить болты и гайки в пластинах.

Для поворота тела используется функция «Переместить/Копировать» (меню Вставка — Элементы), меню которой показано на рисунке 2.5. Здесь указывается тело, которое необходимо повернуть, и угол поворота относительно оси.

ז & י י	ело-Переместить/Коп Х	?			
Перел	иестить/Копировать тела	^			
R	Бобышка-Вытянуть1				
	© Копировать				
Преоб	бразовать	~			
Вращ	ать	^			
(•x	2993.6595мм	* *			
(°,	271.50мм	*			
(°_z	0.00мм	*			
ſ5×	0.00градусов	*			
٦ř	0.00градусов	*			
∱ ^z	170.00градусов	× ×			
Ограничения					

Рисунок 2.5 – Поворот тела.

Для соединения балок необходимо отсечь часть балки на торце с помощью плоскости (рисунок 2.6) в функции «Пересечение» (меню Вставка → Элементы), как показано на рисунке 2.7, под прямым углом к горизонту.

Рисунок 2.6 – Вспомогательная плоскость для отсечения.

 Пересечение1 × 	?
Выбранные объекты Плоскость1 Тело-Переместить/Копир Создать пересекающие области Создать внутренние области Создать внутренние области Создать внутренние области Создать внутренние области Области Пересечь Области для исключения Параметры предв. просмотра Список областей Область 1 Область 2	E
Параметры	-
📝 Удалить поверхности	-

Рисунок 2.7 – Пересечение объектов.

Построим на торце балки прямоугольную пластину, высота которой совпадает с высотой поперечного сечения балки, ширина равна ширине полки, а толщина совпадает с толщиной полки двутаврового сечения. На рисунке 2.8 изображён торец балки с пластиной.

Рисунок 2.8 – Торец балки с пластиной.

Для соединения балок болтами необходимо создать отверстия под крепёж, это можно сделать в меню Элементы → Отверстие под крепёж. Параметры для создания отверстий и их расположение показаны на рисунке 2.9.

Рисунок 2.9 – Параметры и расположение отверстий под болты.

Создадим вторую балку отражением построенной модели относительно пластины на торце, это можно сделать в меню Элементы — Зеркальное отражение.

Построенные балки соединяются шестью болтами M24, которые можно найти в библиотеке проектирования в разделе Toolbox \rightarrow ISO \rightarrow Болты и винты \rightarrow Болты и винты с шестигранными головками – конструкционная сталь (рисунок 2.10), либо построить болт в соответствии с ГОСТ 7798-70 (рисунок 2.11).

Рисунок 2.10 – Болт из библиотеки проектирования.

Рисунок 2.11 – Построенный болт.

При поднесении болтов из библиотеки проектирования к построенным отверстиям, они автоматически закрепятся на пластине. Аналогично поступим с гайками.

Окончательная трёхмерная твердотельная модель конькового соединения балок представлена на рисунках 2.12 и 2.13.

Рисунок 2.12 – Модель двутаврового соединения балок.

Рисунок 2.13 – Модель двутаврового соединения балок.

Для моделирования нагружения балок будем использовать модуль Static Structural в среде ANSYS Workbench. На рисунке 2.14 изображена панель инструментов в ANSYS Workbench и модуль Static Structural.

Рисунок 2.14 – Панель инструментов и модуль Static Structural.

В разделе Engineering Data задаются свойства материалов модели. Материал балок имеет следующие свойства: плотность (Density) $\rho = 7850 \text{ кг/м}^3$, модуль Юнга (Young's Modulus) $E = 2*10^5 \text{ МПа}$, коэффициент Пуассона (Poisson's Ratio) $\upsilon = 0.3$, предел текучести (Tensile Yield Strength) $\sigma_{\rm T} = 325 \text{ МПа}$, укажем эти данные в Engineering Data, как показано на рисунке 2.15.

Outline of	itine of Schematic A2: Engineering Data 🛛 👻 🤻 🗶							
	A		с	D	E			
1	Contents of Engineering Data	9	8	Source	Description			
2	Material							
3	📎 Structural Steel			😤 Ge	Ger Fatigue Data at zero mean stress comes from 1998 ASME BPV Code, Section 8 2, Table 5-110.1			Div
4	🗞 Structural Steel 2	•		穿 Ge	r Fatigue Data at zero mean stress co 2, Table 5-110.1	omes from 1998 ASME BPV Code, Secti	on 8,	Div
*	Click here to add a new material							
Propertie	is of Outline Row 4: Structural Steel 2						• f	L X
	А				В	с	D	Е
1	Property				Value	Unit	8	φą
2	Material Field Variables				III Table			
3	2 Density				7850	kg m^-3		
4	Isotropic Secant Coefficient of Thermal Expansion							
6	🖃 🔀 Isotropic Elasticity							
7	Derive from				Young's Modulus and Poisson			
8	Young's Modulus				2E+11	Pa		
9	Poisson's Ratio				0,3			
10	Bulk Modulus				1,6667E+11	Pa		
11	Shear Modulus				7,6923E+10	Pa		
12	😟 🔀 Alternating Stress Mean Stress							
16	Strain-Life Parameters							
24	🔀 Tensile Yield Strength				325	MPa		

Рисунок 2.15 – Engineering Data.

Для приложения нагрузок в соответствии с рисунком 1 необходимо разделить построенную модель на части. Для этого импортируем построенную модель в формате .STEP в раздел Geometry щелчком правой кнопки мыши, выбрав во всплывающем меню Import geometry \rightarrow Browse.Для редактирования модели перейдём во всплывающем меню в Edit geometry in Desing Modeler. В открывшемся окне нажмём на кнопку ^{Generate} и

приступим к педактированию модели. Для разделения балки необходимо создать плоскость, которой мы будем делить элемент. Для начала создадим плоскость на поверхности пластины, выделив эту поверхность и нажав на кнопку * или в меню Create \rightarrow New Plane. Сместим данную плоскость на расстояние соответствующее чертежу, задав в графе Transform направлние смещения и расстояние в графе Value 1 (рисунок 2.16).

-	Details of Plane19	
	Plane	Plane19
	Туре	From Face
	Subtype	Outline Plane
	Base Face	Selected
	Use Arc Centers for Origin?	Yes
	Transform 1 (RMB)	Offset Z
	FD1, Value 1	-142 mm
	Transform 2 (RMB)	None
	Reverse Normal/Z-Axis?	No
	Flip XY-Axes?	No
	Export Coordinate System?	No

Римунок 2.16 – Создание плоскости.

Разделим балку созданной плоскостью, создав разрез в меню Create \rightarrow Slice. В функции Slise необходимо выбрать тип разреза (Slice Type) Slice by plane (разрез плоскостью), выбрать плоскость (Base Plane) и элементы, которые нужно разделить (Slice Targets). Разделив каждую балку плоскостями, получим модель, изображённую на рисунке 2.17.

Рисунок 2.17 – Модель конькового соединения балок в Workbench.

Перейдём в раздел Model. Зададим материал элементов в ветке Geometry в графе Assignment (Material), выбрав добавленный в разделе Engineering Data материал Structural Steel 2, как показано на рисунке 2.18.

S. Force	2				
Force	4				
. D. Force	5	Ŧ			
Details of "Dvutavr(1)"		ņ			
Graphics Properties					
 Definition 					
Suppressed	No				
Stiffness Behavior	Flexible				
Coordinate System	Default Coordinate System				
Reference Temperature	By Environment				
Behavior	None				
Material					
Assignment Structural Steel 2					
Nonlinear Effects	Yes	_			
Thermal Strain Effects Yes					
 Bounding Box 	Bounding Box				
Length X	0,24993 m				
Length Y	0,59545 m				
Length Z 0,22 m					

Рисунок 2.18 – Присвоение материала.

В разделе Model также задаётся сетка (Mesh). Создадим разные методы разделения для различных элементов конструкции. Для всех тел, не входящих в соединение балок (рисунок 2.19), зададим размер элементов 0.05 м, на верхних поверхностях балок (рисунок 2.20) 0.01 м и зададим метод MultiZone для элементов в соединении балок (рисунок 2.21).

Рисунок 2.19 – Зоны задания размеров сетки.

Рисунок 2.20 – Зоны задания размеров сетки.

Рисунок 2.21 – Зоны задания размеров сетки.

На рисунке 2.22 представлена получившаяся сетка.

Рисунок 2.22 – Конечно-элементная сетка.

Зададим граничные условия (Fixed Support) в ветке Static Structural на внешних торцах балок. На линиях, разделяющих верхние поверхности балок, зададим силы $P_1=P_2=...=P_{12}=0.6$ кH, $P_{13}=P_{14}=6.1$ кH, $P_{15}=P_{16}=3.3$ кH (рисунок 2.23) и решим задачу.

Рисунок 2.23 – Приложенные силы.

В результате моделирования нагружения балок получим значения эквивалентных напряжений (рисунки 2.24) и поле перемещений (рисунок 2.25) для данной конструкции.

Рисунок 2.24 – Распределение напряжений.

Рисунок 2.27 – Поле перемещений.

Материал, из которого изготовлена конструкция, – сталь 09Г2С в соответствии с ГОСТ 19281-89. Модуль Юнга материала составляет 2*10¹¹ Па, коэффициент Пуассона 0.33. Рассчитанные напряжения, возникающие в конструкции при приложении нагрузок, сравнивались с пределом текучести стали 09Г2С в соответствии с ГОСТ 19281-89, который принимался равным 180 МПа (наименьшее значение из ГОСТ 19281-89).

Напряжения по Мизесу достигали значений до 1.5 МПа в болтах и до 32 МПа в двутавре. Следовательно, при рассматриваемых нагрузках, запас прочности существенный. Шести болтов достаточно для надежного конькового соединения с существенным запасом прочности.

3 Решение связанной задачи гидродинамики

В данной работе будет рассмотрена задача о течении жидкости в трубе с упругими стенками. Готовая модель трубы с жидкостью импортирована в расчетный комплекс ANSYS Workbench.

Запускаем ANSYS Workbench. В Toolbox \rightarrow Analysis System выбираем тип анализа, который будет использоваться. В нашем случае это Static Structural и Fluid Flow (CFX). Перетаскиваем их в поле проекта Project Schematic (рисунок 3.1).

Рисунок 3.1 – Поле проекта.

Устанавливаем связи между этими типами анализа, как показано на рисунке. Нажимаем левой кнопкой мыши на Geometry в Transient Structural, не отпуская, подводим курсор к Geometry в Fluid Flow. Аналогично для Setup (рисунок 3.2).

Рисунок 3.2 – Связь между модулями.

Задаем параметры анализа для Static Structural. Нажимаем правой кнопкой мышки на Geometry — Import Geometry — Browse. Выбираем файл с геометрией.

Далее заходим в Design Modeler (рисунок 3.3).

Рисунок 3.3 – Редактирование геометрии.

В дереве Design Modeler нажимаем Import \rightarrow Generate (рисунок 3.4).

Рисунок 3.4 – Генерирование модели.

Модель состоит из 2 твердотельных элементов. Переименовываем их для удобства. Жидкость назовем «Water», а трубу назовем «Pipe». Также меняем свойство модели Add Frozen на Add Material (рисунок 3.5).

Рисунок 3.5 – Модель трубы.

Выходим из Design Modeler. По умолчанию в Engineering Data добавлен материал Structural Steel. Его мы будем использовать как материал, из которого состоит труба. Поэтому новых материалов добавлять не нужно.

Заходим в Static Structural \rightarrow Model. В дереве проекта открываем вкладку Model(A4) \rightarrow Geometry. Исключаем объем, занимаемый жидкостью. Нажимаем правой кнопкой мыши на Fluid, выбираем Suppress Body (рисунок 3.6).

Рисунок 3.6 – Исключение объема, занимаемого жидкостью.

В дереве проекта выбираем Mesh. Нажимаем правой кнопкой мыши на Mesh \rightarrow Insert \rightarrow Method. Выбираем объем, соответствующий стенке. Подтверждаем выбор кнопкой Apply. Задаем метод Method \rightarrow Tetrahedrons, Algorithm \rightarrow Patch Conforming. В поле Sizing \rightarrow Max Face Size выставляем размер в 0.01 m (рисунок 3.7).

Рисунок 3.7 – Конечно-элементная сетка на модели стенки.

Устанавливаем следующие граничные условия: жесткая заделка на торцевых поверхностях и условие взаимодействия трубы с жидкостью (рисунок 3.8).

Рисунок 3.8 – Граничные условия.

Выбираем левой кнопкой мыши в дереве проекта Static Structural (A5) \rightarrow Analysis Settings. В Details задаем значения параметров в Step Controls: Step End Time – 1.s, Auto Time Stepping – Off, Time Step – 0.1 s (рисунок 3.9).

D	etails of "Analysis Set	tings"	ą
	Step Controls		^
	Number Of Steps	1,	
	Current Step Number	1,	
	Step End Time	1, s	
	Auto Time Stepping	Off	
	Define By	Time	
	Time Step	0,1 s	
Ξ	Solver Controls		
	Solver Type	Program Controlled	
	Weak Springs	Off	
	Solver Pivot Checking	Program Controlled	
	Large Deflection	Off	
	Inertia Relief	Off	
÷	Rotordynamics Cont	rols	
÷	Restart Controls		
Ŧ	Nonlinear Controls		
	Output Couturals		

Рисунок 3.9 – Значения параметров задачи.

Закончили работу в Static Structural. Закрываем данный модуль. Убеждаемся, что напротив Model и Setup стоят зеленые галочки. Если вместо галочек нарисована желтая молния, то кликаем правой кнопкой мыши по этому разделу и нажимаем Update. Сохраняем проект (рисунок 3.10).

Рисунок 3.10 – Модуль Static Structural.

Переходим к работе с моделью жидкости в модуле Fluid Flow (CFX). Заходим в Mesh и исключаем объем, принадлежащий стенке трубы подобно пункту 8.

Задаем вход, выход и условие взаимодействия жидкости с трубой. Для этого выбираем торцевую поверхность на входе, щелкаем правой кнопкой мыши по полю, где находится модель, и выбираем Create Named Selection. Вход называем Inlet (рисунок 3.11).

Рисунок 3.11 – Вход (Inlet).

То же самое проделываем для двух оставшихся торцевых поверхностей. Это будет выход. Назовем их Outlet (рисунок 3.12).

Рисунок 3.12 – Выход (Outlet).

Поверхность взаимодействия жидкости и трубы назовем Inter (рисунок

3.13).

Рисунок 3.13 – Взаимодействие жидкости и твердого тела (Inter).

Подобно пункту 9 создаем вычислительную сетку на модели жидкости. Model (B3) \rightarrow Mesh \rightarrow Insert \rightarrow Method. Выбираем объем, соответствующий жидкости. Подтверждаем выбор кнопкой Apply. Задаем метод Method \rightarrow Hex Dominant. В поле Sizing \rightarrow Max Face Size выставляем размер в 0.005 m (рисунок 3.14).

Рисунок 3.14 – Конечно-элементная сетка на модели жидкости.

Закрываем вкладку Mesh модуля Fluid Flow (CFX). Убеждаемся, что напротив Mesh стоит зеленая галочка. Сохраняем проект. Переходим во вкладку Setup. В дереве Setup переходим к Flow Analysis 1 \rightarrow Analysis Type. Задаем время: Total Time – 1s, Timesteps – 0.1s, Analysis Type – Transient. Принимаем изменения. (Данные действия представлены на рисунке 3.15).

Outline Analysis 1	Гуре	E
etails of Analysis Typ	e in Flow Analysis 1	
Basic Settings		
ANSYS MultiField Co	upling	Ξ
Option	ANSYS MultiField	•
Mechanical Input File	ds.dat	
- Coupling Time Cont	trol	8
- Coupling Time Du	ration	
Option	Total Time	-
Total Time	1 [s]	
Coupling Time Ste	eps	Ξ
Option	Timesteps	-
Timesteps	0.1 [s]	
Coupling Initial Tir	me	8
Option	Automatic	•
Analysis Type		
Option	Transient	•
Time Duration		Ξ
Option	Option Coupling Time Duration	
Time Steps		
Option	Coupling Timesteps	-
Initial Time		E
Option	Coupling Initial Time	•

Рисунок 3.15 – Вкладка Analysis Туре.

Так как в нашей модели в качестве жидкости будет использоваться обычная вода (она уже добавлена по умолчанию), то данный шаг описан для

тех случаев, когда модель жидкости представлена иным материалом. На панели инструментов кликаем по значку Material и добавляем в появившемся окне название материала (рисунок 3.16).

Далее на вкладке Basic Settings выставляем в Option – Pure Substance, и в Material Group – User (рисунок 3.17).

Outline Mater	ial: Material 1		×
Details of Material	1		
Basic Settings	Material Prope	rties	
Option	Pure Subs	stance 👻	
Material Group	User	~	
Material Description			Đ
Thermodynamic State		6	Đ
Coordinate F	rame	6	Ð

Рисунок 3.17 – Параметры материала.

Переходим на вкладку Material Properties. Задаем плотность Density [kg m^-3] и динамическую вязкость Transport Properties \rightarrow Dynamic Viscosity [Pa s]. Принимаем изменения (рисунок 3.18).

Outline Mater	rial: Material 1	×
Details of Material	1	
Basic Settings	Material Properties	
Option	General Material	-
Thermodynamic	Properties	Ξ
Equation of Stat	te	Ξ
Option	Value	•
Molar Mass	1.0 [kg kmol^-1]	
Density		
Specific Hea	at Capacity	Ŧ
Reference S	State	Ŧ
Transport Proper	rties	Ξ
Dynamic Vis	scosity	Ξ
Option	Value	-
Dynamic Viscosi	ity	
Thermal Co	nductivity	Ŧ
Radiation Proper	ties	Ŧ
Buoyancy Pro	operties	Đ
Electromagnetic	Properties	Ŧ

Рисунок 3.18 – Параметры материала.

В дереве проекта выбираем Simulation \rightarrow Flow Analysis1 \rightarrow Default Domain. Во вкладке Basic Settings задаем материал, который будет

использоваться в задаче (в нашем случае это вода): Material – Water, Mesh Deformation – Region of Motion Specified (рисунок 3.19).

Basic Settings Flui	d Models Initialization		
Location and Type			
ocation	B88	~ .	
omain Type	omain Type Fluid Domain		
Coordinate Frame	Coord 0	•	
Fluid and Particle Defir	nitions	[
Fluid 1		2	
Fluid 1			
Option	Material Library	•	
Material	Water	~	
Morphology		Ξ	
Option	Continuous Fluid	-	
Minimum Volur	ne Fraction	Ð	
Domain Models			
Pressure		E	
Reference Pressure	1 [atm]		
Buoyancy Model		E	
Option	Non Buoyant	-	
Domain Motion		E	
Option	Stationary	-	
Mesh Deformation		E	
Option	Regions of Motion Specified	•	
Displacement Rel. To	Previous Mesh	•	
Mesh Motion Model			

Рисунок 3.19 – Вкладка Default Domain.

На следующей вкладке Fluid Models меняем все значения на None (рисунок 3.20).

Outline Domair Details of Default Do	n: Default Doma omain in Flow A	n nalysis 1	×
Basic Settings	Fluid Models	Initialization	
Heat Transfer			Ξ
Option	None		-
Turbulence			Ξ
Option	None (La	ninar)	•
Combustion			Ξ
Option	None		-
Thermal Radiation	1		Θ
Option	None		-
Electromagnet	tic Model		Ð

Рисунок 3.20 – Вкладка Fluid Models.

Зададим граничные условия. Нажимаем правой кнопкой на Default Domain \rightarrow Insert \rightarrow Boundary. Называем Inlet. Переходим на вкладку Boundary Details. В поле Mass And Momentum \rightarrow Option выбираем ту характеристику, которую хотим задать на входе модели. В нашем случае это будет скорость. Выбираем Normal Speed и выставляем значение в 3 [m s^-1] (рисунок 3.21).

Outline Boun	idary: inlet			×
Details of inlet in D	efault Domain in Flov	v Analysis 1		
Basic Settings	Boundary Details	Sources	Plot Options	
Flow Regime				
Option	Subsonic			•
Mesh Motion				
Option	Stationary			•
Mass And Mom	entum			
Option	Normal Speed			•
Normal Speed	3 [m s^-1]			

Рисунок 3.21 – Граничное условие на входе.

Также, можно добавить характеристику, которая задается функцией, нажав на значок, указанный на рисунке 3.22.

-Mass And Momentum-			
Option	Normal Speed		- +
Normal Speed	3	m s^-1	▼

Рисунок 3.22 – Добавление функции.

Задаем аналогичное граничное условие для выхода. Нажимаем правой кнопкой на Default Domain \rightarrow Insert \rightarrow Boundary. Называем Outlet. Переходим на вкладку Boundary Details. В поле Mass And Momentum \rightarrow Option выбираем ту характеристику, которую хотим задать на выходе модели. В нашем случае это будет давление. Выбираем Average Static Pressure и выставляем значение в 0 [Pa]. Здесь также можно добавить характеристику, которая задается функцией (рисунок 3.23).

Outline Boundary:	outlet	×
Details of outlet in Defau	ult Domain in Flow Analysis 1	
Basic Settings Bou	ndary Details Sources Plot Options	
Flow Regime		
Option	Subsonic	•
Mesh Motion		
Option	Stationary	•
Mass And Momentum	-	
Option	Average Static Pressure	•
Relative Pressure	0 [Pa]	
Pres. Profile Blend	0.05	
Pressure Averaging		
Option	Average Over Whole Outlet	•

Рисунок 3.23 – Граничное условие на выходе.

Создадим условие контакта FSI (Fluid Solid Interface). Переходим в Simulation \rightarrow Flow Analysis1 \rightarrow Default Domain \rightarrow Default Domain Default. Во вкладке Basic Settings выставляем в поле Boundary Type – Wall (рисунок 3.24).

Outline Bound	dary: Default Domain Default Domain Default in Default Domain in Flow Analysis 1	×
Basic Settings	Boundary Details Sources	
Boundary Type	Wall	•
Location	F89.88,F90.88,F91.88,F92.88,F93.88,F95.88	
Coordinate F	Frame	Ŧ

Рисунок 3.24 – Вкладка Basic Settings.

Далее переходим во вкладку Boundary Details. В поле Mesh Motion – Option выбираем ANSYS MultiField. В поле Mass And Momentum – Option выбираем No Slip Wall (условие прилипания частиц жидкости к стенке) (рисунок 3.25).

Basic Settings	Boundary Details	Sources	
Mesh Motion			
Option	ANSYS MultiF	ield	
Receive from AM	ISYS Total Mesh D	splacement	
ANSYS Interface	FSIN_1		•
Send to ANSYS	Total Force		•
Mass And Mome	entum		
Option	No Slip Wall		
Wall Vel. Rel. To	Mesh Motion		•
Wall Veloci	ty		
Additional Coup	ling Sent Data		

Рисунок 3.25 - FSI.

Зададим начальные условия. На панели инструментов кликаем по значку Global Initialization. Проставляем нулевые значения скоростей и давления (рисунок 3.26).

Outline	Initialization		×
Details of G	obal Initializat	tion in Flow Analysis 1	
Global Se	ettings		
Coor	dinate Frame		ŧ
Initial Co	onditions		
Velocity T	Гуре	Cartesian 🔻	
Cartesi	an Velocity Corr	ponents	
Option		Automatic with Value	
U		0 [m s^-1]	
v		0 [m s^-1]	
w		0 [m s^-1]	
Static F	Pressure		
Option		Automatic with Value	
Relative	Pressure	0 [Pa]	

Рисунок 3.26 – Начальные условия.

Далее заходим в Simulations \rightarrow Flow Analysis 1 \rightarrow Solver \rightarrow Solver Control. На вкладке External Coupling выбираем последовательность решения Solve ANSYS Fields – After CFX Fields (рисунок 3.27).

Outline Solver	r Control				3
Details of Solver Co	ntrol in Flow Analysis 1				
Basic Settings	Equation Class Settings	External Coupling	Advanced Options		
-Coupling Step Co	ntrol				
Max. Iterations	10				
Min. Iterations	1				
- Solution Sequer	nce Control				
Solve ANSYS Fie	After CFX Fields			•	
Coupling Data Tra	ansfer Control				Ξ
Under Relaxn. Fac	c. 0.75]
Convergence Targ	get 1e-2				
Ansys Variable					
DISP				^	
FORC					
FX					
FZ				~	
DISP					Ð

Рисунок 3.27 – Вкладка External Coupling.

Переходим в Simulations \rightarrow Flow Analysis 1 \rightarrow Solver \rightarrow Output Control. На вкладке Trn Results создаем новый файл для записи результатов. Устанавливаем частоту записи результатов в поле Output Frequency – Option – Every Timestep (рисунок 3.28).

Outline Output Contro		×
Details of Output Control i	n Flow Analysis 1	
Results Backup	Trn Results Trn Stats Monitor Export	\
Transient Results		
Transient Results 1		
		\sim
Transient Results 1		8
Option	Standard 🗸	
File Compression	Default	
Output Equation R	esiduals	÷
Extra Output Varia	bles List	ŧ
Output Frequency		
Option	Every Timestep	

Рисунок 3.28 – Вкладка Trn Results.

Выходим из модуля Fluid Flow (CFX). Убеждаемся, что напротив Geometry, Mesh и Setup стоят зеленые галочки. Если вместо галочек нарисована желтая молния, то кликаем правой кнопкой мыши по этому разделу и нажимаем Update. Нажимаем на Solution – Refresh. Сохраняем проект.

Запускаем решение. Заходим в Solution. В появившейся табличке меняем в поле Parallel Environment – Run Mode – IBM MPI Local Parallel устанавливаем на значение 4 (в зависимости от количества поток вашего ПК). Нажимаем Start Run (рисунок 3.29). Если задача посчиталась верно, то в конце решения появится табличка с надписью Solution is done!.

o Define Run	? ×
Solver Input File	_001.res 🖻 😰
Global Run Settings	
Run Definition Initial Values MultiF	ield
Run Settings	
Type of Run Full	w.
Double Precision	
Large Problem	
Parallel Environment	Ξ
Run Mode IBM MPI Local Par	allel 👻
Host Name Partitions	
sublake 4	+
	-
Show Advanced Controls	
Start Run Save Settings	Cancel

Рисунок 3.29 – Подготовка к запуску.

Займемся просмотром результатов решенной задачи. В модуле Fluid Flow (CFX) открываем вкладку Results. Отобразим линии тока жидкости в модели, перемещения и напряжения в стенке модели.

Отобразим линии тока жидкости. На панели инструментов выбираем Streamline (рисунок 3.30).

Рисунок 3.30 – Панель инструментов.

Далее в появившемся окне выставляем настройки, как показано на рисунке 3.31 и нажимаем применить. В итоге получим картину, представленную на рисунке 3.32.

Geometry	Color	Symbol	Limits	Re		
Type Definition	3D Strea	amline	•		^	
Domains	All Don	nains	•			
Start From	inlet	inlet 🔹				
Sampling	Equally	Spaced	•			
# of Points	40				P	
		🛠 Previe	ew Seed Po	ints		
Variable	Velocit	Y	•			
Boundary Data	Ону	/brid	Conserv	ative		
Direction	Forwar	rd	-			
Cross Perio	dics				~	
Annha		Deast		- E	_	

Рисунок 3.31 – Окно настройки Streamline.

Рисунок 3.32 – Линии тока жидкости.

Покажем перемещения в стенке модели. В Cases \rightarrow ANSYS at 1s \rightarrow Default Domain \rightarrow Default Boundary. Выставляем все, как показано на рисунке 3.33. Также, сделаем логарифмическую шкалу, для более удобного отображения результатов. Получим картину, представленную на рисунке 3.34.

COIOI	Kenu	ei	view				
1ode	N	/aria	ble				•
Variable		Tota	l Mesh Di	splace	emen	t	•
Range		Glob	al				•
Min						0 [[m]
Max				1.3	80386	5e-07 ([m]
Boundar	y Data	C	Hybrid		\bigcirc	Conse	ervativ
Color Sc	ale	Loga	arithmic				•
	an	Defa	ult (Rainl	how)			•

Рисунок 3.33 – Окно настройки Default Boundary.

Рисунок 3.34 – Перемещения стенки модели.

Покажем напряжения модели стенки. На панели инструментов выбираем Contour. В настройке выставляем все, как показано на рисунке 3.35. В итоге получим картину, представленную на рисунке 3.36.

Details of Cont	our 1						
Geometry	Labels	Render	View				
Domains	All ANSY	S Domains		•			
Locations	Default B	Default Boundary 🔹					
Variable	Von Mis	es Stress		•			
Range	Global			•			
Min			46.7313	[Pa]			
Max			16764.6	[Pa]			
# of Contours	11						
Advanced Pro	perties			Ŧ			
Apply		Reset		Defaults			

Рисунок 3.35 – Окно настройки Contour.

Рисунок 3.36 – Напряжения стенки модели.

4 Расчёт плоской рамы, сравнение элементов типа Beam и Link

4.1 Элемент типа Веат

Рассмотрим задачу о нагружении плоской рамы с использованием элемента Beam.

Сначала необходимо выбрать тип задачи в главном меню (Main Menu) в пункте «Preferences» (рисунок 4.1.1)

Рисунок 4.1.1 – Главное меню.

В появившемся окне выбираем тип «Structural» (рисунок 4.1.2).

N Preferences for GUI Filtering			
[KEYW] Preferences for GUI Filtering			
Individual discipline(s) to show in the GUI			
	Structural		
	Thermal		
	ANSYS Fluid		
Electromagnetic:			
	Magnetic-Nodal		
	☐ Magnetic-Edge		
	High Frequency		
	Electric		
Note: If no individual disciplines are selected they will all sho	w.		
Discipline options			
	h-Method		
OK	Cancel	Help	

Рисунок 4.1.2 – Выбор типа задачи.

Добавим элемент в меню Preprocessor \rightarrow Element Type \rightarrow Add/Edit/Delete (рисунок 4.1.3).

Main Menu	T Element Types		>	<)
Preferences				
Preprocessor				
Element Type	Defined Element Types:			
Add/Edit/Delete	NONE DEFINED			
Switch Elem Type				
Add DOF				
Remove DOFs				
Elem Tech Control				
Real Constants				
Material Props				
Sections				
Modeling				
Meshing				
Checking Ctris				
Numbering Ctris Archive Medal				
Archive Woder Coupling / Coop				
Multi field Set Up				
Physics				
Path Operations	Add	Options	Delete	
Solution	*			
General Postproc				
TimeHist Postpro	Close		Help	
BOM Tool				
Radiation Opt				
Session Editor				
🖬 Finish				

Рисунок 4.1.3 – Добавление типа элемента.

Выберем тип элемента Веат 188 (рисунок 4.1.4).

Library of Element Types		×
Only structural element types are shown		
Library of Element Types	Structural Mass	3D finite strain 2 node 188
	Beam	3 node 189
	Pipe Solid	
	Shell	
	Solid-Shell	2 node 188
Element type reference number	1	
ОК	Apply Cancel	Help

Рисунок 4.1.4 – Выбор элемента Веат 188.

Зададим свойства материала в меню Preprocessor \rightarrow Material Props \rightarrow Material Models, как показано на рисунке 4.1.5 (модуль Юнга, коэффициент Пуассона).

Рисунок 4.1.5 – Задание свойств материала.

Зададим геометрические размеры сечения в меню Preprocessor \rightarrow Sections \rightarrow Beam \rightarrow Common Sections (рисунок 4.1.6).

Рисунок 4.1.6 – Задание размеров поперечного сечения.

Перейдем к построению геометрической модели. Задаем точки в активной системе координат в меню Preprocessor \rightarrow Modeling \rightarrow Create Keypoints \rightarrow In Active CS (рисунок 4.1.7).

Рисунок 4.1.7 – Задание точек.

Соединим точки линиями в меню Preprocessor \rightarrow Modeling \rightarrow Create Lines \rightarrow Straight Line (рисунок 4.1.8).

Рисунок 4.1.8 – Создание линий.

Задаем размеры сетки в меню Preprocessor \rightarrow Meshing \rightarrow Mesh Tool \rightarrow Size Control: Global \rightarrow Set. В окне «Global Element Size» необходимо задать либо размер элемента «Element edge length», либо количество делений «No. of element divisions» (рисунок 4.1.9).

		N
Main Menu	MeshTool	
Preferences	Element Attributes:	
Preprocessor		ES
Element Type	Global • Set	
Real Constants		TE NOM
Material Props	Smart Size	
Sections		
Modeling	Fine 6 Coarse	
Meshing		
Mesh Attributes	Size Controls:	
MeshTool	Global Set Clear	A Global Element Sizes
Size Cntris	Areas Cas Chara	
Mesner Opts	Set Clear	[ESIZE] Global element sizes and divisions (applies only
B Mesh	Lines Set Clear	to "unsized" lines)
E Modify Mesh	Comula	SIZE Element edge length 0
E Check Mesh	copy np	NDIV No. of element divisions - 0
Clear	Laver Set Clear	- (used only if element edge length SI7E is blank or tern)
Checking Ctrls		- (used only a chemical early is such as only of the of th
Numbering Ctrls	Keypts Set Clear	
Archive Model		
Coupling / Ceqn	Mastr.	OK Cancel Help
Multi-field Set Up	Lines -	
Loads	Shape: 🕫 Radio1 C Hex/Wedge	
Physics	G Free C Mapped C Sweep	
Path Operations		
Solution	3 or 4 sided 🛛 👻	
General Postproc		
BOM Tool	Mesh Clear	
Rediation Ont		
Session Editor		
E Finish		X
	Refine at: Elements	

Рисунок 4.1.9 – Задание размера сетки.

Построим сетку, нажав на клавишу Mesh и выделив элементы (рисунок 4.1.10).

Рисунок 4.1.10 – Выделение элементов для построения сетки.

Переходим к заданию граничных условий. Выберем область (точку), в которой необходимо задать условие в меню Preprocessor \rightarrow Loads \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Force/Moment \rightarrow On Keypoints или, что дублирует предыдущий путь, Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Structural Displacement \rightarrow On Keypoints (рисунок 4.1.11).

Рисунок 4.1.11 – Выбор области задания граничного условия.

Зададим граничные условия в окне, показанном на рисунке 4.1.12 (жёсткая заделка, шарнир).

Apply U,ROT on KPs	
[DK] Apply Displacements (U,ROT) on Keypoints	
Lab2 DOFs to be constrained	All DOF UX UY UZ ROTX
Apply as	Constant value 🔻
If Constant value then:	_
VALUE Displacement value	0
KEXPND Expand disp to nodes?	Ves
OK Apply	Cancel Help

Рисунок 4.1.12 – Задание граничных условий.

После задания граничных условий модель должна вуглядеть так, как на рисунке 4.1.13.

Рисунок 4.1.13 – Рама с заданными граничными условиями.

Далее приложим нагрузки в точках или узлах в меню Preprocessor \rightarrow Loads \rightarrow Define Loads \rightarrow Apply \rightarrow Structural \rightarrow Force/Moment \rightarrow On Keypoints или Solution \rightarrow Define Loads \rightarrow Apply \rightarrow Structural Displacement \rightarrow On Keypoints (рисунок 4.1.14).

□ Loads □ Analysis Type □ Define Loads			
Settings	Apply F/M on KPs	X	Ŋ
 □ Apply □ Structural □ Displacement 	[FK] Apply Force/Moment on Keypoints Lab Direction of force/mom	FY v	
 □ Force/Moment ➢ On Keypoints ➢ On Nodes ➢ On Node Components 	Apply as If Constant value then: VALUE Force/moment value	Constant value 💌	
 ➡ From Reactions ➡ From Mag Analy ➡ Pressure ➡ Temperature 	OK Apply	Cancel Help	
⊞ Inertia I Pretnsn Sectn III Gen Plane Strain III Other	X		

Рисунок 4.1.14 – Приложение нагрузок.

После приложения нагрузок модель должна вуглядеть так, как на рисунке 4.1.15.

Рисунок 4.1.15 – Рама с заданными граничными условиями и нагрузками. Запустим задачу на расчет в Solution→Solve→CurrentLS (рисунок 4.1.16).

Рисунок 4.1.16 – Решение задачи.

После того, как появится сообщение о завершении решения, перейдем к отображению результатов. Отобразить результаты можно в меню General Postproc \rightarrow Plot Results \rightarrow Contour Plot \rightarrow Nodal Solution (рисунок 4.1.17).

🖃 General Postproc
📆 Data & File Opts
🗰 Results Summary
🗄 Read Results
🛨 Failure Criteria
Plot Results
📰 Deformed Shape
🖃 Contour Plot
📷 Nodal Solu
📷 Element Solu
🧱 Elem Table
📷 Line Elem Res
🛨 Vector Plot
🕀 Plot Path Item
🛨 Concrete Plot
🕀 ThinFilm

Рисунок 4.1.17 – Анализ результатов.

Выберем результаты, которые нужно отобразить: в нашем случае это суммарные перемещения (рисунок 4.1.18).

Scale Factor	Auto Calculated	
Undisplaced shape key	Deformed shape only	
Undisplaced shape key —		
,		
🔀 lotal Mechan	ical otrain	
Stress	inal Charles	
🔗 Rotati	in vector sum	
🧬 Z-Con	ponent of rotation	
🍘 V-Con	ponent of rotation	
🌮 X-Con	ponent of rotation	
🧀 Displa	ement vector sum	
🧭 Z-Con	ponent of displacement	
💋 V-Con	ponent of displacement	
🚰 2001 0000000	nonent of displacement	
DOE Solution		
Madal Solution		

Рисунок 4.1.18 – Выбор необходимых результатов.

В итоге в рабочем окне должна быть отрисована деформированная геометрия рамы с изображенной цветовой шкалой, соответствующей значениям перемещений.

Рисунок 4.1.19 – Отображение перемещений.

4.2 Элемент типа Link

При решении задачи о нагружении плоской рамы с использованием элемента типа Link 180 многие шаги из предыдущей главы будут повторяться, поэтому останавливаться на них подробно не будем. После подготовительных шагов, связанных с выбором типа задачи, выберем тип элемента Link 180 (рисунок 4.2.1).

Рисунок 4.2.1 – Выбор типа элемента Link180.

Зададим площадь поперечного сечения в меню Preprocessor \rightarrow Real Constants \rightarrow Add/Edit/Delete в графе Cross-sectional area (рисунок 4.2.2).

	Real Constants V A S	
	NONE DEFINED	Real Constant Set Number 1, for LINK180 V Element Type Reference No. 1 Real constant Set No.
Preferences		Cross-sectional area AREA I Added Mass (Mass/Length) ADDWAS I
 Preprocessor Element Type 		OK Apply Cancel Help
Real Constants	Add Edit Delete	
 Thickness Func Material Props 	Close Help	

Рисунок 4.2.2 – Задание площади поперечного сечения.

Аналогично предыдущему случаю зададим параметры поперечного сечения, после чего перейдем к построению геометрической модели. Зададим узлы в меню Preprocessor \rightarrow Modeling \rightarrow Create \rightarrow Nodes \rightarrow In Active CS (4.2.3).

Рисунок 4.2.3 – Задание узлов.

Соединим построенные узлы в меню Preprocessor \rightarrow Modeling \rightarrow Create \rightarrow Elements \rightarrow Auto Numbered \rightarrow Thru Nodes.

Далее аналогично предыдущему случаю зададим граничные условия и запустим задачу на расчет, после чего в результате получим перемещения, изображенные на рисунке 4.2.4.

Как видно из рисунков 4.1.19 и 4.2.4, максимальные значения перемещений совпадают для элементов Beam 188 и Link 180. Таким образом, при моделировании растяжения (сжатия) стержней можно использовать любой из данных элементов. Однако при моделировании изгибных деформаций элемент типа Link 180 не подойдет, так как этот элемент работает только на сжатие (растяжение).

5 Параболический и прямоугольный профиль скорости на входе в сосуд: сравнительный анализ методом конечных элементов

При решении задач о течении крови в сосудах требуется ставить граничные условия на входе в сосуд. Как правило, исследователи задают объемный поток или скорость потока крови. По сей день не угасают споры о том, какой профиль скорости необходимо задавать: параболический или прямоугольный.

В данном разделе попробуем разобраться, насколько важно учитывать и ставить параболический профиль скорости на входе в сосуд при выполнении численных расчетов методом конечных элементов.

Сначала рассмотрим, какую форму будет иметь профиль скорости в течение 1 секунды на входе в сосуд диаметром 5 мм в плоской постановке. Предположим, что скорость меняется во времени по синусоидальному закону. Будем рассматривать прямоугольный профиль высотой 0.25 см/с и аналогичный по объемному расходу параболический, задаваемый следующим уравнением

$$v(y) = -60000 y(y - 0.005)$$

Параметры уравнения, приведенного выше, были подобраны исходя из требования равенства объемных кровотоков для обоих профилей. Объемный кровоток в сечении – это интеграл от нормальной компоненты скорости крови по площади сечения.

На одном графике эти две кривые будут выглядеть следующим образом (рисунок 5.1).

Рисунок 5.1 – Прямоугольный и парболический профили скорости на входе плоской модели сосуда.

Проиллюстрируем входные данные для сосуда, для чего построим пространственные поверхности (рисунок 5.2, 5.3).

Рисунок 5.2 – Поверхность скорости на входе для прямоугольного профиля скорости (по горизонтальным осям отложены время и координата).

Рисунок 5.3 – Поверхность скорости на входе для параболического профиля скорости (по горизонтальным осям отложены время и координата).

Проведем численный расчет течения крови в плоской прямоугольной области высотой 5 мм и длиной 5 см с представленными выше граничными условиями на входе для скорости потока крови. На боковых поверхностях будем задавать условия прилипания, на выходе нулевое давление. Кровь – вязкая несжимаемая однородная ньютоновская жидкость.

Результаты расчетов показали, что на расстоянии нескольких диаметров от начала канала профили скорости становятся не зависящими от граничных условий на входе. На рисунке 5.4 представлены профили скорости потока крови на выходе из канала при расчете с прямоугольным и параболическим профилем скорости на входе в канал. Видно, что и форма, и числовые значения практически неотличимы. Более того, если проводить расчет сосудов с бифуркациями, то разница будет еще менее заметной.

Рисунок 5.4 – Профили скорости потока крови на выходе из канала при расчете с прямоугольным и параболическим профилем скорости на входе в канал.

Рисунок 5.5 показывает поле скоростей для обоих профилей скорости крови на входе в плоский канал.

Рисунок 5.5 – Поле скоростей в каналах

в зависимости от типа профиля скорости на входе.

В данном примере расчеты проводились в системе конечноэлементного анализа ANSYS Mechanical APDL. Использовалась регулярная четырехугольная вычислительная сетка, состоящая из плоских четырехугольных элементов Flotran141.

Задание скорости потока крови на входе в виде функции в ANSYS APDL осуществляется в меню Parameters->Functions, что проиллюстрировано на рисунке 5.6.

Parameters Macro MenuCtris Help	T Function Edito	or						×
Scalar Parameters Get Scalar Data	File Edit Help	0						
Array Parameters Get Array Data Array Operations	Function Function	Regime 1 Type e equation	Regime 2	Regime 3	Regime	4 Regime	e 5 Regin	ne 6
Functions	 Multiv 	alued functi	on based or	n regime v	variable	<r< td=""><td>egime Va</td><td>P</td></r<>	egime Va	P
Angular Units Read From File	(X,Y,Z) ir	nterpreted in	CSYS: 0			-		
Save Parameters Restore Parameters Parameters Macro MenuCtris Help		Re	sult = -6000	* <mark>{y}</mark> *({y} -0	.005)			
Scalar Parameters Get Scalar Data	C Degrees	s 🦷 Radiar	IS					
Array Parameters	()	GRAPH		TIME		•	
Array Operations	MIN	ASIN	e^x				1	
Functions Define/Edit	MAX	SIN	LN	7	8	9	1	CLEAR
Angular Units Read From File	RCL	ACOS	10^x					
Save Parameters	STO	COS	LOG	4	5	6	*	•
Restore Parameters	INS MEM	ATAN	SQRT					
	ABS	TAN	x^2	1	2	3	-	E
		PI	x^(1/y)					Ť
	INV	ATAN2	x^y		0		+	R

Рисунок 5.6 – Создание функции в ANSYS APDL.

Затем созданная функция сохраняется в файл и читается, и записывается в таблицу (рисунок5.7), которую можно использовать при постановке граничных условий.

N Function Loader	×
Comments	
	A
	T
Table parameter name	
inlet_v	
Local coordinate system id for (x, y, x) inter	pretation
0 -	
Function	
Equation	
Result = -6000*(y)*((y)-0.005)	A
	Ψ.
Constant Values	
None	A
NORE	
	-
OK Cancel	Help

Рисунок 5.7 – Запись функции в виде таблицы.

Можно сделать вывод, что при численных расчетах поведения сосудов человека необязательно усложнять профиль задаваемой на входе сосудов скорости крови. Достаточно знать линейную скорость потока и ее изменение в течение сердечного цикла.

6 Нагружение балки в два шага

Рассмотрим задачу о колебаниях консольной балки, вызванных временно действующей нагрузкой. В данном примере рассматривается плоская модель балки. Одни конец балки жестко закреплен, на втором конце действует сосредоточенная изгибающая сила. В примере используется возможность ANSYS прикладывать нагрузки в несколько шагов (loadstep).

На первом этапе нужно построить выбрать тип анализа

Preprocessor->Preferences->Structural.

Далее из библиотеки элементов требуется выбрать элемент (четырехугольный четырехузловой линейный плоский элемент)

Preprocessor->Preferences->Element type->Add->Quad 4 node 42.

На следующем шаге задаем свойства материала балки (однородный изотропный и линейно-упругий)

Preprocessor->Preferences->Material prop->Material models->Structural->Linear->Elastic->Isotropic (модуль Юнга 2E11 Н/м², коэффициент Пуассона 0.33), а также задать плотность материала (7800 кг/м³)

Preprocessor->Preferences->Material prop->Material models->Structural->Density.

Геометрическая модель балки строится следующим образом

Preprocessor->Modeling->Create->Ares->Rectangle->By 2 corners.

В полях height, width ставим 10 м и 1 м соответственно.

Получаем следующий прямоугольник, показанный на рисунке 6.1.

Рисунок 6.1 – Геометрическая модель плоской балки.

На следующем шаге нужно построить вычислительную сетку. Геометрия модели простая, поверхность регулярная. Поэтому в данном случае мы легко можем создать регулярную четырехугольную сетку (рисунок 6.2).

Preprocessor->Meshing->Mesh tool.

B size controls->global задаем размер элемента 0.1. Далее: Preprocessor->Meshing->Mesh tool->Quad->Mapped->Mesh.

Рисунок 6.2 – Четырехугольная регулярная сетка.

Далее необходимо настроить решатель, определить тип анализа и поставить граничные условия для первого шага нагружения (рисунок 6.3).

Solution->Analysis type->Sol'n controls

Small Displacement Transient All solution items Calculate prestress effects Basic quantities User selected Time Control Nodal DOF Solution Time at end of loadstep 1 Automatic time stepping Off Image: Number of substeps Frequency: Image: Number of substeps Frequency:			white Items to Results i	
Image: Calculate prestress effects Image: Calculate prestress effects Time Control Image: Calculate prestress effects Time at end of loadstep Image: Calculate prestress effects Automatic time stepping Off Image: Calculate prestress effects Image: Calculate prestress effects Image: Calculate prestress effects Nodal DOF Solution Nodal Velocity Nodal Acceleration Image: Calculate prestress effects Image: Calculate prestress effects Image: Calculate prestress effects Image: Calculate prestres Image: Ca	Small Displacement Tra	ansient 🗾	All solution items All solution items	
Time Control Nodal DDF Solution Time at end of loadstep 1 Automatic time stepping Off Image: Nodal Acceleration Element Solution Image: Number of substeps Frequency:	Calculate prestres:	serrects	C User selected	
C Time increment	Time Control Time at end of loadstep Automatic time stepping Number of substeps Time increment	[1] Off	Nodal DOF Solution Nodal Reaction Loads Nodal Velocity Nodal Acceleration Element Solution Frequency: Write every substep	
Number of substeps 10 Max no. of substeps 0 Min no. of substeps 0	Number of substeps Max no. of substeps Min no. of substeps	0 0	where N = 1	

Рисунок 6.3 – Окно настроек решателя Solution Controls.

Мы выбираем нестационарный анализ, принимаем гипотезу малых деформаций, конечное время на шаге нагружения – 1 с. Задается 10 подшагов нагрузки и осуществляет запись всех подшагов в файл результатов.

Постановка граничных условий производится в следующем меню

Solution->Define Loads->Apply->Structural->Displacements->On lines->All DOF.

Здесь мы жестко закрепляем левый конец балки, то есть задаем нулевые перемещения по левой вертикальной линии.

На правом конце балки прикладываем сосредоточенную силу 100 кН

Solution->Define Loads->Apply->Structural->Force/Moment->On

Keypoints->FX. Покажем поставленные граничные условия на рисунке 6.4.

```
LINES
TYPE NUM
U
F
```

Рисунок 6.4 – Граничные условия плоской балки.

Далее мы запускаем первый шаг нагружения на расчет:

Solution->Solve->Current LS->Ok.

После появления на экране надписи «Solution is done», мы должны поменять граничные условия и настройки решателя, не выходя из меню Solution. Нужно убрать силу на консольном конце балки (Solution->Define Loads->Delete->Structural->Force/Moment->On Keypoints) и задать конечное время на втором шаге нагружения – 2 с.

После этого мы снова выполняем pacчет Solution->Solve->Current LS->Ok. Результаты расчета второго шага нагружения добавляются к результатам расчета первого шага нагружения. Теперь можно проанализировать и визуализировать результаты расчетов. Сначала посмотрим, какие подшаги были сохранены (рисунок 6.5).

General Postproc->Results summary.

Рисунок 6.5 – Список сохраненных подшагов.

Мы видим, что программа сохранила 20 подшагов, как и предполагалось. Выберем подшаг из первой секунды расчета (первого шага нагружения): General Postproc->Read results->By pick-> 0.9 с.

Отобразим перемещения балки в этот момент времени.

General Postproc->Plot results->Contour plot->Nodal solution->DOF solution->Displacement vector sum (рисунок 6.6).

Рисунок 6.6 – Перемещения балки на первом шаге нагружения.

Выберем подшаг из второй секунды расчета (второго шага нагружения).

General Postproc->Read results->By pick-> 1.1 c.

Далее щелкнем правой кнопкой мыши по рабочей области и в контекстном меню выберем Replot (рисунок 6.7).

Рисунок 6.7 – Перемещения балки на втором шаге нагружения.

Мы видим, что после снятия нагрузки балка колеблется. Другими словами, свободный конец балки поднимается и опускается, что продемонстрировано на рисунках 6.6, 6.7. Можно создать анимацию с движением балки: Plot Ctrls->Animate->Over results (over time).

7 Команды для активирования режима FSI

ANSYS Mechanical APDL (ранее интерфейс назывался Prep7) позволяет решать связанные упруго-гидродинамические задачи. Такие краевые задачи описывают движение крови в сосудах человека: кровь действует на стенку силами вязкости и давлением, стенка изгибается и деформируется, вследствие чего изменяется область течения крови. Для решения связанных задач используется модуль Flotran (конечные элементы Fluid141, Fluid142).

Решение связанных задач в ANSYS Mechanical APDL можно производить двумя способами: с помощью MFX Solver или при помощи ввода команд. Рассмотрим команды, которые необходимо ввести для активации режима FSI (fluid-structure interaction).

fsan,on // активирование FSI

fsor,fluid // выбор очередности решения

fstr,fluid,tran // выбор типа анализа для fluid (tran или stat)

fstr,solid,tran // выбор типа анализа для solid (tran или stat)

fsin,nonc // выбор типа интерполяции между полями (nonc или cons)

fsti,1 // установка времени интегрирования

fsdt,.005 // установка шага интегрирования

fsit,10 // установка количества итераций

fsco,all,.01 // установка критерия для сходимости

fsre,all,0.8 // установка параметра релаксации

Данные команды сохранились в ANSYS со времен версий 8.0 и ниже, при этом современные версии ANSYS выдают ошибку при вводе команд, тем не менее, команды работают.

Заключение

В пособии приведены некоторые примеры решения типовых задач механики и гидродинамики с помощью системы конечно-элементного моделирования ANSYS.

Рассмотренные примеры позволяют сравнить некоторые подходы к решению типовых задач, получить базовые знания по постановке задач механики и гидроупругости в среде ANSYS, а также по визуализации результатов и их интерпретации.

Конечно, в пособии не охвачены многие функции и опции, доступные в модулях ANSYS. Но это и не было целью. Основная цель состояла в том, чтобы научить базовым функциям при работе с геометрией, вычислительными сетками и функциями постановки и решения задач на конкретных примерах задач производственной и научной деятельности.

Считаем, что пособие будет полезно начинающим инженерам, студентам, магистрам, бакалаврам и аспирантам, занимающимся численным моделированием краевых задач в системе ANSYS.

66

Литература

- Доль А.В., Гуляев Ю.П., Иванов Д.В. Математические модели движения крови в системе сосудов с упругими стенками // Успехи современного естествознания. – 2014. – № 9. – С. 79-84.
- Применение 2. Смирнов Д.А., Иванов Д.В., Доль A.B. систем автоматизированного проектирования к построению 3d модели челюсти В сборнике: Практическая биомеханика Материалы докладов конференции Всероссийской молодых ученых с международным участием. Ответственный редактор Л.Ю. Коссович. – 2015. – С. 138-141.
- Иванов Д.В., Доль А.В. Применение томографических изображений для создания трехмерных индивидуальных реалистичных моделей биологических объектов // Кардио-ИТ. – 2015. – Т. 2. – № 4. – С. 0402.
- Иванов Д.В., Доль А.В., Кузык Ю.И. Биомеханические основы прогнозирования протекания каротидного атеросклероза // Российский журнал биомеханики. – 2017. – Т. 21. – № 1. – С. 29-40.
- Кудяшев А.Л., Хоминец В.В., Теремшонок А.В., Коростелев К.Е., Нагорный Е.Б., Доль А.В., Иванов Д.В., Кириллова И.В., Коссович Л.Ю. Биомеханические предпосылки формирования проксимального переходного кифоза после транспедикулярной фиксации поясничного отдела позвоночника // Российский журнал биомеханики. – 2017. – Т. 21. – № 3. – С. 313.

Учебное издание

ДОЛЬ АЛЕКСАНДР ВИКТОРОВИЧ ИВАНОВ ДМИТРИЙ ВАЛЕРЬЕВИЧ

РЕШЕНИЕ ЗАДАЧ МЕХАНИКИ В ANSYS

Учебно-методическое пособие

Серия «Вычислительная механика»

Работа выполнена при поддержке

Грантового конкурса Стипендиальной программы В. Потанина (проект ГК170000223)

Сдано в набор 15.05.2018. Подписано в печать 17.05.2018. Формат 60х84 1/16. Бумага офсетная. Гарнитура Times New Roman. Печ.л.4,25. Уч.-изд. л. 3,97. Тираж 50. Зак. № 2117.

Отпечатано в соответствии с предоставленными материалами в ООО «Буква», 410004, г. Саратов, ул. Чернышевского, 50. Тел.: (8452) 21-25-11