Рассмотрим задачу о колебаниях консольной балки, вызванных временно действующей нагрузкой.

В данном примере рассматривается плоская модель балки. Одни конец балки жестко закреплен, на второй действует сосредоточенная изгибающая сила. В примере используется возможность ANSYS прикладывать нагрузки в несколько шагов (loadstep).

На первом этапе нужно построить выбрать тип анализа

Preprocessor->Preferences->Structural.

Далее требуется выбрать из библиотеки элементов элемент

Preprocessor->Preferences->Element type->Add->Quad 4 node 42.

На следующем шаге задаем свойства материала балки

Preprocessor->Preferences->Material prop->Material models->Structural->Linear->Elastic->Isotropic (модуль Юнга 2E11 Н/м² коэффициент Пуассона 0.33), а также задать плотность материала (7800 кг/м³)

Preprocessor->Preferences->Material prop->Material models->Structural->Density.

Геометрическая модель балки строится следующим образом Preprocessor->Modeling->Create->Ares->Rectangle->By 2 corners. В полях height, width ставим 10 м и 1 м соответственно. Получаем следующий прямоугольник.

На следующем шаге нужно построит вычислительную сетку. Геометрия модели простая, поверхность регулярная. Поэтому в данном случае мы легко можем создать регулярную четырехугольную сетку.

Preprocessor->Meshing->Mesh tool.

В size controls->global задаем размер элемента 0.1. Далее

Preprocessor->Meshing->Mesh tool->Quad->Mapped->Mesh.

Осталось настроить решатель, определить тип анализа и поставить граничные условия для первого шага нагружения.

Small Dis	placement Transient	▼I ● All solution iter	ns	
Calcu	late prestress effects	O Basic quantitie	C Basic quantities	
		C User selected		
Time Control	-	Nodal DOF Solutio	n 🔺	
Time at end	of loadstep	Nodal Velocity		
Automatic ti	me stepping Off	Nodal Acceleration Element Solution	-	
Number	of substeps	Frequency:		
C Time incl	rement	Write every subst	ep 🔽	
Number of s	ubsteps 10	where N = 1		
Max no. of s	ubsteps 0			
Min nov of st	ubsteps 0			
1				

Solution->Analysis type->Sol'n controls->

Мы выбираем нестационарный анализ, малые деформации, конечное время на шаге нагружения – 1 с, 10 подшагов нагрузки и запись всех подшагов в файл результатов.

Постановка граничных условий производится в меню

Solution->Define loads->Apply->Structural->Displacements->On lines->All DOF – жестко закрепляем левый конец балки, то есть задаем нулевые перемещения по левой вертикальной линии.

На правом конце балки прикладываем сосредоточенную силу 100 кН

Solution->Define loads->Apply->Structural->Force/Moment->On keypoints->FX.

Далее мы запускаем первый шаг нагружения на счет.

Solution->Solve->Current LS->Ok.

После появления на экране надписи «Solution is done», мы должны поменять граничные условия и настройки решателя, не выходя из меню Solution. Нужно убрать силу на консольном конце балки и задать конечное время на втором шаге нагружения – 2 с.

Solution->Define loads->Delete->Structural->Force/Moment->On keypoints.

После этого мы снова выполняем расчет

Solution->Solve->Current LS->Ok.

Теперь можно проанализировать и визуализировать результаты расчетов. Сначала посмотрим, какие подшаги были сохранены.

General Postproc->Results summary.

SET,LIST Command		×
File		
File ****** INDEX OF DATH SETS ON RESULTS I SET TIME/FREQ LOAD STEP SUBSTI 10.10000 1 1 20.20000 1 2 30.30000 1 3 40.40000 1 4 50.50000 1 6 70.70000 1 6 90.90000 1 9 10.10000 1 10 11.1000 2 1 12.12000 2 2 13.3000 2 3 14.4000 2 4 15.15000 2 5 16.16000 2 6 17.17000 2 7 18 1.8000 2 8	LE ***** CUHULATIVE 1 2 3 4 5 6 7 7 8 9 10 10 11 12 13 14 14 15 16 17 18	
20 2.0000 2 10	20	

Мы видим, что программа сохранила 20 подшагов, как и предполагалось.

Выберем подшаг из первой секунды расчеты (первого лоадстепа).

General Postproc->Read results->By pick-> 0.9 c.

Отобразим перемещения балки в этот момент времени.

General Postproc->Plot results->Contour plot->Nodal solution->DOF solution->Displacement vector sum.

Выберем подшаг из второй секунды расчеты (второго лоадстепа).

General Postproc->Read results->By pick-> 1.1 c.

Далее щелкнем правой кнопкой мыши по рабочей области и в контекстном меню выберем Replot.

Мы видим, что после снятия нагрузки балка колеблется.

Можно создать анимацию с движением балки.

Plot ctrls->Animate->Over results (over time).